

Time-Domain Finite-Element Modeling of Dispersive Media

Dan Jiao, *Student Member, IEEE*, and Jian-Ming Jin, *Fellow, IEEE*

Abstract—A general formulation is described for time-domain finite-element modeling of electromagnetic fields in a general dispersive medium. The formulation is based on the second-order vector wave equation and incorporates the dispersion effect of a medium via a recursively evaluated convolution integral. This evaluation is kept to second order in accuracy using linear interpolation within each time step. Numerical examples are given to validate the proposed formulation.

Index Terms—Dispersive medium, finite-element method.

I. INTRODUCTION

FOR any time-domain based numerical method to accurately perform wide-band electromagnetic simulations, one has to incorporate the effect of medium dispersion in its formulation. Over the past decade, several approaches have been proposed for the finite-difference time-domain (FDTD) method [1]–[6]. Little work has been reported on the dispersion modeling in the time-domain finite-element method (TDFEM) since TDFEM is not as well developed as FDTD. This situation, however, is changing rapidly; much interest has recently been attracted to TDFEM because of its modeling accuracy and flexibility [7]–[9]. In this work, a general formulation is developed to model the dispersion effect in TDFEM. This TDFEM is based on the second-order vector wave equation, in contrast to most FDTD schemes that solve the first-order Maxwell's equations. The required convolution integral is evaluated recursively without a need to store the fields of all past time steps. This evaluation is ensured of second order in accuracy by adopting a linear interpolation for the fields within each time step. The proposed formulation is shown to be valid for plasma, Debye, and Lorentz media with a single or multiple poles. Three-dimensional (3-D) numerical examples are given to demonstrate its efficacy.

II. FORMULATION

The electric field in a general dispersive medium satisfies the second-order wave equation

$$\nabla \times \mu_r^{-1} \nabla \times \mathbf{E}(\mathbf{r}, t) + \mu_0 \epsilon \partial_t^2 \mathbf{E}(\mathbf{r}, t) + \mathcal{L}(\mathbf{E}(\mathbf{r}, t)) = -\mu_0 \partial_t \mathbf{J}_s(\mathbf{r}, t) \quad (1)$$

Manuscript received September 2, 2000; revised February 5, 2001. This work was supported by a grant from AFOSR via the MURI Program under Contract F49620-96-1-0025.

The authors are with the Center for Computational Electromagnetics, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2991 USA.

Publisher Item Identifier S 1531-1309(01)04012-0.

where $\mathbf{J}_s(\mathbf{r}, t)$ denotes the source current density and \mathcal{L} represents an operator on the field \mathbf{E} . For plasma

$$\begin{aligned} \mathcal{L}(\mathbf{E}(\mathbf{r}, t)) &= \mu_0 \epsilon_0 \omega_p^2 \{1 - \nu_c \varphi(t) * \} \mathbf{E}(\mathbf{r}, t) \\ \varphi(t) &= e^{-\nu_c t} \bar{u}(t) \end{aligned} \quad (2)$$

where

$$\begin{aligned} \omega_p &\text{ plasma frequency;} \\ \nu_c &\text{ damping frequency;} \\ \bar{u}(\cdot) &\text{ unit step function;} \\ * &\text{ convolution.} \end{aligned}$$

For a Debye medium

$$\begin{aligned} \mathcal{L}(\mathbf{E}(\mathbf{r}, t)) &= \mu_0 \epsilon_0 (\epsilon_s - \epsilon_\infty) \tau^{-3} \{\tau^2 \partial_t - \tau + \varphi(t) * \} \mathbf{E}(\mathbf{r}, t) \\ \varphi(t) &= e^{-t/\tau} \bar{u}(t) \end{aligned} \quad (3)$$

where τ is the relaxation time, ϵ_s and ϵ_∞ denote the relative dielectric constants at zero (dc) and infinite frequencies, respectively. For a Lorentz medium

$$\begin{aligned} \mathcal{L}(\mathbf{E}(\mathbf{r}, t)) &= \mu_0 \epsilon_0 (\epsilon_s - \epsilon_\infty) \omega_0^2 \\ &\quad \times \{G - \alpha^{-1} [2\delta \partial_t + \omega_0^2] \varphi(t) * \} \mathbf{E}(\mathbf{r}, t) \\ \varphi(t) &= e^{-\delta t} \sin(\alpha t) \bar{u}(t) \end{aligned} \quad (4)$$

where

$$\begin{aligned} \delta &= \nu_c/2 && \text{damping constant;} \\ \omega_0 & && \text{resonant frequency;} \\ \alpha &= \sqrt{\omega_0^2 - \delta^2}, \text{ and } G && \text{coefficient weighting the} \\ & && \text{contribution from the induced} \\ & && \text{polarization currents.} \end{aligned}$$

To illustrate the finite element solution of (1), we assume a mixed boundary condition on the surface of the volume of interest as

$$\mu_r^{-1} \hat{n} \times [\nabla \times \mathbf{E}(\mathbf{r}, t)] + c^{-1} \partial_t \hat{n} \times [\hat{n} \times \mathbf{E}(\mathbf{r}, t)] = \mathbf{U}(\mathbf{r}, t). \quad (5)$$

The corresponding weak-form solution is then given by

$$\begin{aligned} &\iiint_V \{ \mu_r^{-1} [\nabla \times \mathbf{N}_i(\mathbf{r})] \cdot [\nabla \times \mathbf{E}(\mathbf{r}, t)] \\ &\quad + \mu_0 \epsilon \mathbf{N}_i(\mathbf{r}) \cdot \partial_t^2 \mathbf{E}(\mathbf{r}, t) + \mathbf{N}_i(\mathbf{r}) \cdot \mathcal{L}(\mathbf{E}(\mathbf{r}, t)) \\ &\quad + \mu_0 \mathbf{N}_i(\mathbf{r}) \cdot \partial_t \mathbf{J}_s(\mathbf{r}, t) \} dV \\ &+ \iint_S \{ c^{-1} [\hat{n} \times \mathbf{N}_i(\mathbf{r})] \cdot \partial_t [\hat{n} \times \mathbf{E}(\mathbf{r}, t)] \\ &\quad + \mathbf{N}_i(\mathbf{r}) \cdot \mathbf{U}(\mathbf{r}, t) \} dS = 0 \end{aligned} \quad (6)$$

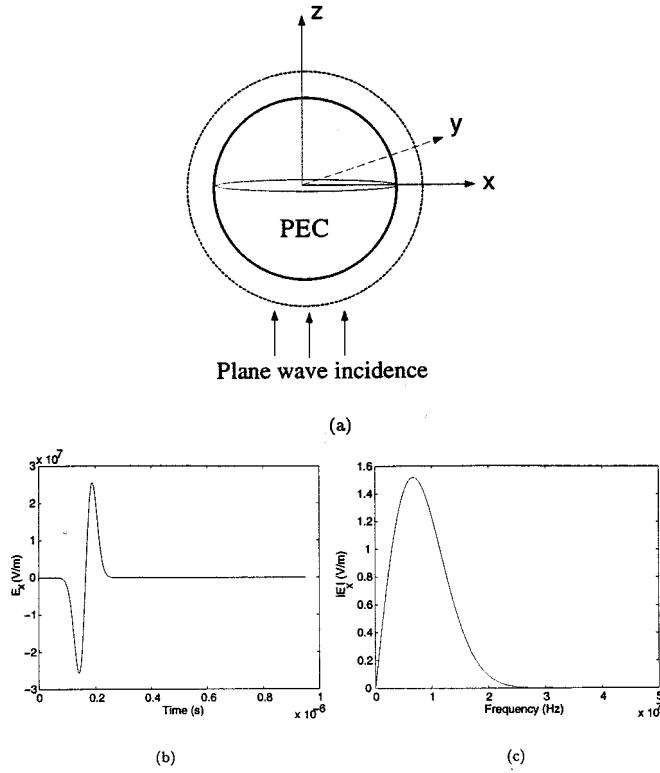


Fig. 1. The coated sphere and the incident electric field. (a) Geometry. (b) E_x versus time. (c) $|E_x|$ versus frequency.

where $\mathbf{N}_i(\mathbf{r})$ denotes the vector basis functions. Expanding the electric field as

$$\mathbf{E}(\mathbf{r}, t) = \sum_{j=1}^N u_j(t) \mathbf{N}_j(\mathbf{r}) \quad (7)$$

with N denoting the total number of unknowns, and substituting into (6), we obtain the ordinary differential equation

$$\mathbf{T} \frac{d^2 u}{dt^2} + \mathbf{R} \frac{du}{dt} + \mathbf{S} u + \mathbf{Y} \frac{d\psi}{dt} + \mathbf{Z} \psi + w = 0 \quad (8)$$

where \mathbf{T} , \mathbf{R} , \mathbf{S} , \mathbf{Y} , and \mathbf{Z} denote matrices whose elements can be identified from (6). Also, u is a vector given by $u = [u_1, u_2, \dots, u_N]^T$, ψ is a vector whose elements are given by

$$\psi_i(t) = \varphi(t) * u_i(t) \quad (9)$$

and finally, w is a vector contributed by $\mathbf{J}_s(\mathbf{r}, t)$ and $\mathbf{U}(\mathbf{r}, t)$.

Since the susceptibility function of a general dispersive medium can be expressed as a rational function in frequency domain, its time-domain counterpart inherits the feature of exponential functions. Without loss of generality, we can write $\varphi(t)$ as

$$\varphi(t) = \text{Re}[a e^{-bt} \bar{u}(t)] \quad (10)$$

where

- $a = 1$ and $b = \nu_c$ plasma;
- $a = 1$ and $b = \tau^{-1}$ Debye medium;
- $a = -j$ and $b = \delta - j\alpha$ Lorentz medium.

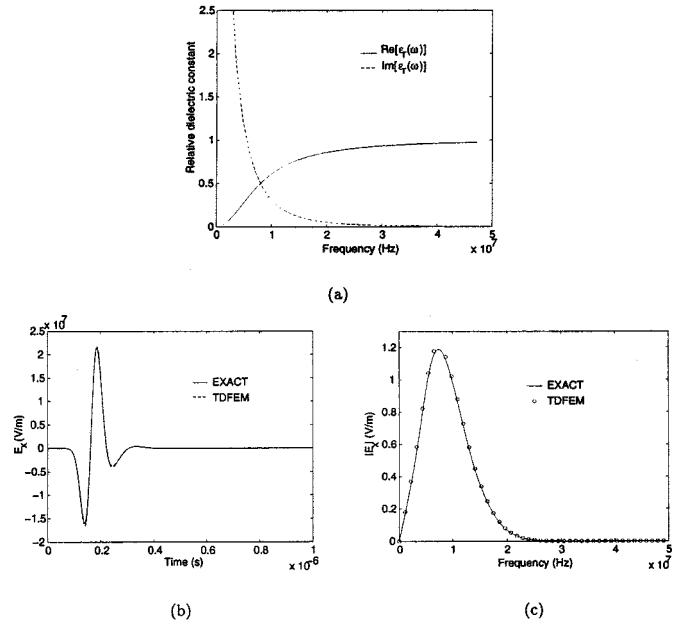


Fig. 2. Results for a metallic sphere coated with plasma. (a) Relative dielectric constant ($\omega_p = \nu_c = 50 \text{ Mrad/s}$). (b) E_x versus time. (c) $|E_x|$ versus frequency.

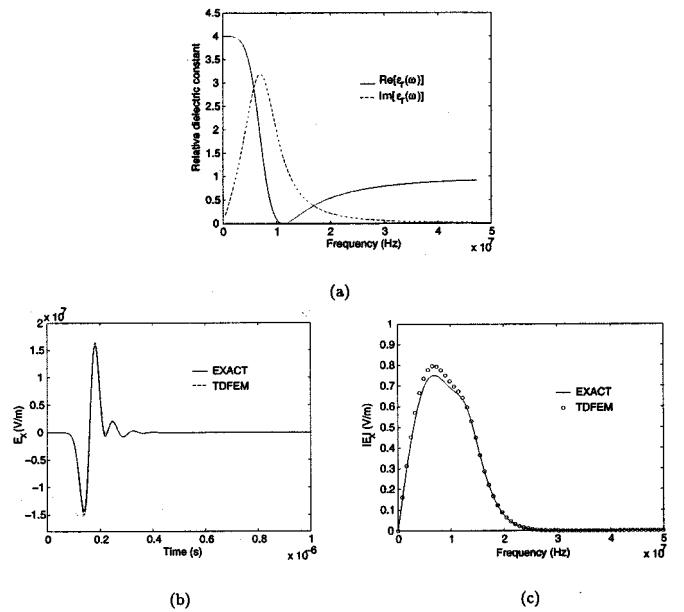


Fig. 3. Results for a metallic sphere coated with a Lorentz medium. (a) Relative dielectric constant ($\omega_1 = 2\delta = 50 \text{ Mrad/s}$, $\epsilon_s = 4.0$, $\epsilon_\infty = 1.0$, $G = 1$). (b) E_x versus time. (c) $|E_x|$ versus frequency.

As a result, the convolution in (9) can be evaluated recursively as

$$\begin{aligned} \psi_i^{n+1} &= \text{Re}[\hat{\psi}_i^{n+1}] \\ \hat{\psi}_i^{n+1} &= e^{-b\Delta t} \hat{\psi}_i^n + a e^{-b(n+1)\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} e^{b\tau} u_i(\tau) d\tau. \end{aligned} \quad (11)$$

Instead of assuming $u_i(t)$ to be constant within the time interval $(n\Delta t, (n+1)\Delta t)$, we employ linear interpolation to guarantee

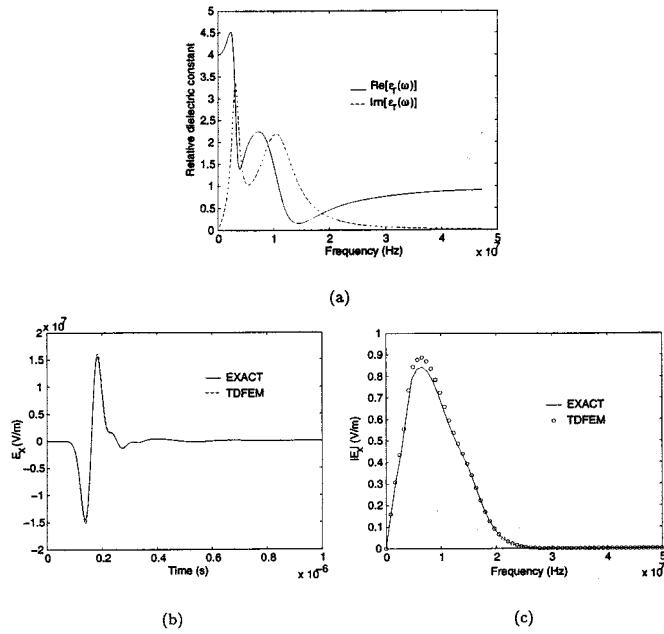


Fig. 4. Results for a metallic sphere coated with a second-order Lorentz medium. (a) Relative dielectric constant ($\omega_1 = 70$ Mrad/s, $2\delta_1 = 50$ Mrad/s, $\omega_2 = 20$ Mrad/s, $2\delta_2 = 10$ Mrad/s, $G_1 = G_2 = 0.5$, $\epsilon_s = 4.0$, $\epsilon_\infty = 1.0$). (b) E_x versus time. (c) $|E_x|$ versus frequency.

the second order in accuracy. As a consequence, we obtain the recursive relation

$$\hat{\psi}_i^{n+1} = e^{-b\Delta t} \hat{\psi}_i^n + 0.5a\Delta t(u_i^{n+1} + e^{-b\Delta t}u_i^n). \quad (12)$$

The above strategy can easily be extended to a general dispersive medium with an arbitrary order.

III. NUMERICAL EXAMPLES

To validate the proposed formulation, we consider a metallic sphere coated with either plasma, a Lorentz, or a second-order Lorentz medium. The metallic sphere has a radius of 0.8 m and the coating has a thickness of 0.2 m. This coated sphere is illuminated by an x -polarized incident plane wave, whose electric field is plotted in Fig. 1, propagating along the z -direction. The

boundary integral equation is used to truncate the finite-element mesh accurately [9].

Figs. 2–4 display the calculated electric field E_x at the observation point $\mathbf{r} = 0.1\hat{\mathbf{y}} - 1.18\hat{\mathbf{z}}$ m as a function of time and frequency. It is seen that the calculated results agree very well with the exact solution obtained from the Mie series.

IV. CONCLUSION

A general approach was proposed to incorporate the dispersion effect in the TDFEM modeling of electromagnetic fields in a general dispersive medium. This approach employs a recursive evaluation of convolution integrals to avoid the storage of all past fields and adopts linear interpolation within each time step to achieve a second-order accuracy. Three-dimensional numerical examples were given to demonstrate its validity.

REFERENCES

- [1] R. J. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," *IEEE Trans. Electromagn. Compat.*, vol. 32, pp. 222–227, Aug. 1990.
- [2] R. M. Joseph, S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulse," *Opt. Lett.*, vol. 16, pp. 1412–1414, 1991.
- [3] D. M. Sullivan, "Frequency-dependent FDTD methods using Z transforms," *IEEE Trans. Antennas Propagat.*, vol. 40, pp. 1223–1230, Oct. 1992.
- [4] O. P. Gandhi, B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 658–665, Apr. 1993.
- [5] J. L. Young, "Propagation in linear dispersive Media: finite difference time-domain methodologies," *IEEE Trans. Antennas Propagat.*, vol. 43, pp. 422–426, Apr. 1995.
- [6] Q. Chen, M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," *IEEE Trans. Antennas Propagat.*, vol. 46, pp. 1739–1746, Nov. 1998.
- [7] J. F. Lee, R. Lee, and A. Cangellaris, "Time-domain finite-element methods," *IEEE Trans. Antennas Propagat.*, vol. 45, pp. 430–442, Mar. 1997.
- [8] D. A. White, "Orthogonal vector basis functions for time domain finite element solution of the vector wave equation," *IEEE Trans. Magn.*, vol. 35, pp. 1458–1461, May 1999.
- [9] D. Jiao, A. Ergin, B. Shanker, E. Michielssen, and J. M. Jin, "A fast time-domain finite element-boundary integral method for three-dimensional electromagnetic scattering analysis," *IEEE Trans. Antennas Propagat.*, to be published.