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Time-Domain Finite-Element Modeling of
Dispersive Media

Dan Jiag Student Member, IEEEBNd Jian-Ming JinFellow, IEEE

Abstract—A general formulation is described for time-domain  whereJ ;(r, t) denotes the source current density @hcepre-
finite-element modeling of electromagnetic fields in a general sents an operator on the fiekl For plasma
dispersive medium. The formulation is based on the second-order
vector wave equation and incorporates the dispersion effect

of a medium via a recursively evaluated convolution integral. L(E(r,1)) :Moéowg{l — vep(t)xtE(r,t)
This evaluation is kept to second order in accuracy using linear o(t) :e"’fta(t) 2)
interpolation within each time step. Numerical examples are given
to validate the proposed formulation.
_ _ _ o where
Index Terms—DPispersive medium, finite-element method. wp plasma frequency;

v.  damping frequency;
I. INTRODUCTION u(-) unit step function;

OR any time-domain based numerical method to acc - convoluthn.
rately perform wide-band electromagnetic simulationE,OraDebye medium
one has to incorporate the effect of medium dispersion in its s g
formulation. Over the past decade, several approaches ha¢dE(T:1)) =oco(€s — o) {7°0, — 7 + (1)} E(r, 1)
been proposed for the finite-difference time-domain (FDTD) @(t) = Tu(t) 3)
method [1]-[6]. Little work has been reported on the dispersion
modeling in the time-domain finite-element method (TDFEMyvherer is the relaxation times; ande., denote the relative di-
since TDFEM is not as well developed as FDTD. This situalectric constants at zero (dc) and infinite frequencies, respec-
tion, however, is changing rapidly; much interest has recentiyely. For a Lorentz medium
been attracted to TDFEM because of its modeling accuracy
and flexibility [7]-[9]. In this work, a general formulation is L(E(r,1)) =poco(es — coo)wi

developed to model the dispersion effect in TDFEM. This < {0 — a~L[268 2] () VE(r ¢
TDFEM is based on the second-order vector wave equation, ﬂi _ “ 7[ i+ ] () B )
in contrast to most FDTD schemes that solve the first-order p(t) =c " sin(at)u(t) 4)

Maxwell's equations. The required convolution integral is
evaluated recursively without a need to store the fields of dfnere

past time steps. This evaluation is ensured of second order if = ¥e/2 damping constant;

accuracy by adopting a linear interpolation for the fields within «o resonant frequency;

each time step.The proposed formulation is shown to be validx = Vw3 — 6%,andG  coefficient weighting the

for plasma, Debye, and Lorentz media with a single or multiple contribution from the induced

poles. Three-dimensional (3-D) numerical examples are given polarization currents.

to demonstrate its efficacy. To illustrate the finite element solution of (1), we assume a
mixed boundary condition on the surface of the volume of in-

1. FORMULATION terest as

The electric field in a ge_neral dispersive medium satisfies thﬁ:lf1 X [V x E(r, )] + 10 x [ x E(r, t)] = U(r, 1). (5)
second-order wave equation

V X 1MV X B(r,8) + jocd?E(r, £) + L(E(r, 1)) The corresponding weak-form solution is then given by

= —podd(r, 1) (1) 1
{n [V x Nu(r)] - [V x E(r,t)]
v
2
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Fig. 1. The coated sphere and the incident electric field. (a) Geomett..(b)
versus time. (c)E,| versus frequency. __ Retegen
- Im{ea)]
whereN;,(r) denotes the vector basis functions. Expanding the
electric field as
N gu‘st) T 5
E(r,t) =Y u;(t)N(r) @) ’
j=1 (a)
] ) o 2ad : '
with IV denoting the total number of unknowns, and substitutir o8
into (6), we obtain the ordinary differential equation 1 -
E 0.5 = 0.6 T TEs:g
d?u du dip %o 208
T—— +R— +Su+Y-"+Zp+w=0 g Foa
dt? dt dt "(/ ( ) o9 03
=] 02
where'I’, R, S, Y, and Z denote matrices whose element: - ot
can be identified from (6). Alsay is a vector given by, = . L
[u1,u2,...,un]T, 1 is a vector whose elements are given by ©
(®) c
Pi(t) = () * ui(t) 9)

Fig. 3. Results for a metallic sphere coated with a Lorentz medium. (a)
. . . Relative dielectric constant.¢ = 26 = 50 Mrad/s,e, = 4.0, e.. = 1.0,
and finally,w is a vector contributed by (r, ¢) andU(r, t). G =1). (b) E, versus time. (C)E, | versus frequency.

Since the susceptibility function of a general dispersive
medium can be expressed as a rational function in freque
domain, its time-domain counterpart inherits the feature
exponential functions. Without loss of generality, we can writé

ro}%(a result, the convolution in (9) can be evaluated recursively

(p(t) as z/}n-i—l :Re[z/;n-l—l]
bt — (n+1)At
o(t) = Re[ac™ " a(t)] (20) 1/37@4-1 —ebALn aefb(n+l)At/ AT (1) dr.
/ nAt
where (11)
a=1andb=1, plasma;
a=1landb=7"1 Debye medium; Instead of assuming;(¢) to be constant within the time interval

a=—j7andb= 46— ja Lorentz medium. (nAt, (n + 1)At), we employ linear interpolation to guarantee
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Fig. 4. Results for a metallic sphere coated with a second-order Lorentz

medium. (a) Relative dielectric constant,(= 70 Mrad/s,26, = 50 Mrad/s,
ws = 20 Mrad/s,26; = 10 Mrad/s,G1 = G2 = 0.5,¢; = 4.0, e = 1.0).
(b) E,, versus time. (C)E, | versus frequency.

boundary integral equation is used to truncate the finite-element
mesh accurately [9].

Figs. 2—4 display the calculated electric fieh) at the ob-
servation point = 0.1y — 1.18z m as a function of time and
frequency. It is seen that the calculated results agree very well
with the exact solution obtained from the Mie series.

IV. CONCLUSION

A general approach was proposed to incorporate the disper-
sion effect in the TDFEM modeling of electromagnetic fields in
a general dispersive medium. This approach employs a recur-
sive evaluation of convolution integrals to avoid the storage of
all past fields and adopts linear interpolation within each time
step to achieve a second-order accuracy. Three-dimensional nu-
merical examples were given to demonstrate its validity.
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